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Figure 1. Target-Bench provides a dataset collected with a quadruped robot, and a benchmark for evaluating world models in mapless
path planning toward text-specified goals with implicit semantic meaning. In Target-Bench, world models receive a camera frame and
a textual prompt describing the target state, and predict a future video depicting the trajectory toward the goal. A world decoder then
extracts the planned path from this video, which is compared against the maneuver executed by a human-operated quadruped.

Abstract

While recent world models generate highly realistic videos,
their ability to perform robot path planning remains unclear
and unquantified. We introduce Target-Bench, the first
benchmark specifically designed to evaluate world mod-
els on mapless path planning toward semantic targets in
real-world environments. Target-Bench provides 450 robot-
collected video sequences spanning 45 semantic categories
with SLAM-based ground truth trajectories. Our evaluation
pipeline recovers camera motion from generated videos and
measures planning performance using five complementary

∗ Equal contribution; author order settled via Mario Kart.

metrics that quantify target-reaching capability, trajectory
accuracy, and directional consistency. We evaluate state-of-
the-art models including Sora 2, Veo 3.1, and the Wan se-
ries. The best off-the-shelf model (Wan2.2-Flash) achieves
only 0.299 overall score, revealing significant limitations
in current world models for robotic planning tasks. We
show that fine-tuning an open-source 5B-parameter model
on only 325 scenarios from our dataset achieves 0.345 over-
all score—an improvement of more than 400% over its base
version and 15% higher than the best off-the-shelf model.
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1. Introduction
“If one day, we bring a humanoid robot to this
conference venue, a place it has never seen be-
fore, and I can simply say ‘Please bring this bottle
of water to someone in the audience,’ and it can
smoothly walk over and do it by itself, I think that
would be the robot’s ChatGPT moment.”

— Xingxing Wang, Head of Unitree, at the World
Robot Conference 2025.

Embodied AI has been advancing rapidly, while its core
challenges are becoming clearer. Despite major improve-
ments (better actuators and sensors) in robotic hardware, AI
software remains the main bottleneck limiting robots from
realizing their full potential [22]. As a result, the robotics
and embodied AI community is seeking to develop AI sys-
tems that are more robust and more generalizable. Recent
breakthroughs in World Models (WMs) [4, 7, 29, 32, 35]
have drawn attention from the community. WMs learn to
predict how the world evolves over time [10, 18]. Given
an initial observation (e.g., an image frame) and a condition
(e.g., a text prompt or an action), models such as Veo3.1 [7]
and Genie3 [4] can generate future frames with high spatio-
temporal consistency. More importantly, they exhibit re-
markable reasoning abilities in visual semantics and causal
relationships [5, 9, 35]. This potential has sparked inter-
est within the embodied AI community in applying WMs
to robotic applications [19, 26, 33, 39]. Recent approaches
from Unitree, such as UnifoLM-WMA-0 [30], aim to bridge
WMs with low-level robot control.

The underlying philosophy of these approaches is that
if a model can accurately predict how the world evolves,
its predictions can serve as a plan to guide the robot ac-
tions. However, a key question remains: How accurate
must these predictions be to count as useful for plan-
ning? More broadly, how can we quantitatively assess a
WM’s reasoning, task-solving, and planning ability? Exist-
ing evaluation frameworks focus mainly on reconstruction
quality, from visual fidelity to physical consistency [8, 20],
while assessing mapless path planning driven by semantic
understanding remains an open challenge [22]. Bridging
this gap requires a benchmark that evaluates not just how
realistic a WM’s predictions look, but whether they contain
the semantic reasoning needed for robotic planning tasks.

To address this challenge, we introduce Target-Bench.
To our knowledge, it is the first benchmark evaluating WMs
for mapless path planning toward semantic targets in un-
structured real-world environments. The target state is spec-
ified by user text and can have implicit semantic meaning
(Fig. 1). Our contributions are:
• An open-source dataset of 450 videos (112,500 frames)

collected with a quadruped robot, covering 45 semantic
target categories in diverse indoor and outdoor environ-

ments, with ground truth trajectories and human annota-
tions for explicitly- and implicitly-stated targets.

• The first systematic evaluation pipeline for WMs in
mapless path planning with textual semantic goals.

• A world decoder that extracts camera motion from gen-
erated videos, comparing spatial reconstruction methods
and introducing a new scale recovery technique.

• A comparative study of open-source and proprietary
WMs, including the first fine-tuning of an open-source
model on a small real-world dataset for path planning,
demonstrating improved generalization to unseen envi-
ronments over proprietary models.

2. Related Work
World Models. Early approaches such as World Mod-
els [10] and Dreamer [11] introduced latent state-space
models, demonstrating that generative prediction has the
potential to support planning and control [9]. More recently,
foundation-scale methods pretrained on large video corpora
have emerged: Cosmos [25] compared diffusion and au-
toregressive paradigms; DIAMOND [2] improved visual
fidelity; V-JEPA 2 [3] enhanced efficiency by forecasting
in latent space. Advances in video generation, including
Sora 2 [29], Veo 3.1 [7, 35], and Wan [32], have further im-
proved prompt adherence and physics-aware dynamics, en-
abling long-horizon predictions. Interactive models such as
Genie-1 [6], Genie-2 [27], and Genie-3 [4] provide control-
lable environments for use in robotics and games. Unitree’s
recent UnifoLM-WMA-0 [30] aims to extract the reasoning
capabilities of WMs and translate them into real-world ac-
tions. However, the ability of WMs to perform robot task
planning in real-world scenarios is largely untested.

Benchmarks for World Models. Recent works have pro-
posed benchmarks to evaluate generative WMs, often re-
lying on Vision Language Model (VLM)-based judges to
assess the quality and consistency of generated scenes.
VBench [15] targets 16 fine-grained video quality dimen-
sions, while WorldModelBench [20] focuses on physics
consistency (e.g., Newtonian motion). Compared to
VBench, WorldScore [8] emphasizes controllability and dy-
namics in next-scene prediction. World-in-World [38] en-
ables closed-loop evaluation but uses WMs as simulators
and does not test their planning abilities. Overall, exist-
ing benchmarks primarily assess spatio-temporal or physi-
cal consistency, and do not consider high-level robot plan-
ning. Recent advances in spatio-temporal scene reconstruc-
tion [14, 34, 36] further highlight the limits of using only
VLM-based scoring for WM evaluation. We extend this lit-
erature by assessing not only spatio-temporal coherence but
also path planning abilities.

Semantic Navigation Datasets. Several datasets address
semantic robot navigation, with social compliance in real-
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(a) Quadruped robot hardware setup and communication network. (b) SLAM pipeline for state estimation.

Figure 2. Robot setup and SLAM pipeline.

(a) All trajectories. (b) Word cloud of captions. (c) Semantic target categories. (d) Target-Bench Evaluation Results.

Figure 3. Visualization of dataset structure and semantics.

world scenarios. EgoWalk [1] provides egocentric data
with stereo images, odometry, and traversability labels,
but suffers from heading misalignment and IMU drift.
LeLaN [13] leverages unlabeled human walking videos to
train language-conditioned policies, while SCAND [16] of-
fers socially compliant robot demonstrations. MuSoHu [24]
captures multimodal wearable data for natural interac-
tions, SACSoN [12] focuses on office navigation with hu-
man–robot interaction, and SANPO [31] targets outdoor
navigation. CityWalker [21] enables mapless urban nav-
igation amid traffic and crowds. However, these datasets
lack explicit navigation targets, and their VLM-based anno-
tations are not target-oriented.

3. Target-Bench

As shown in Fig. 1, Target-Bench consists of two compo-
nents: a Target dataset and the Target benchmark evalu-
ation pipeline. The Target dataset (Fig. 2a) is collected
with a quadruped robot equipped with multi-modal sensors
in diverse indoor and outdoor environments. It spans 45
semantic target categories (e.g., doors, chairs, trees) and in-
cludes 450 scenarios. Our Target benchmark comprises
two stages: world decoder and path evaluation. The world
decoder extracts camera poses from generated video to form
a path, which is then compared against the ground truth
path. Path evaluation metrics focus on the proximity to the
target and directional consistency, jointly assessing scenario

reconstruction quality and semantic navigation capability.

3.1. Target Dataset Setup
3.1.1. Quadruped Robot Platform
As shown in Fig. 2a, our data-collection platform is built
on a DEEP Robotics Lite 3 Venture quadruped. It carries
a Livox Mid-360 LiDAR, an OAK-D Pro W stereo RGB
camera, and an NVIDIA Jetson AGX Orin for mapping and
state estimation. The LiDAR connects to the robot base via
an Ethernet switch, and the camera connects to the Jetson
via USB. The Jetson is powered by a dedicated onboard
battery. A Wi-Fi link connects the Jetson to a remote laptop
for monitoring and logging, and to a handheld controller for
teleoperation. Our software stack (Fig. 2b) uses a LiDAR-
centric SLAM pipeline [17, 28] with multi-sensor fusion.
Inertial Measurement Unit (IMU) data and legged odometry
are fused via an Extended Kalman Filter (EKF) to produce
a stable base-frame pose, which is broadcast through the
ROS TF tree to align the LiDAR and robot frames. The Li-
DAR point clouds are processed by the Simultaneous Local-
ization and Mapping (SLAM) front-end with motion com-
pensation and incremental registration guided by the fused
odometry. The back-end then optimizes the trajectory and
builds a global map, enabling accurate pose estimation.

3.1.2. Semantic Target Data Collection
Each data sample in the Target dataset consists of four com-
ponents: a video sequence, a ground truth trajectory, a se-
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Figure 4. Data sample visualization.

mantic target and a point cloud map. Video frames are cap-
tured at 25Hz, yielding approximately 10 seconds of con-
tinuous observation per sample. The semantic targets are
annotated and pre-selected by human experts to ensure di-
versity and relevance for navigation tasks. Fig. 3a shows
that our trajectories span diverse directions and movement
patterns, providing balanced and realistic navigation cover-
age. Fig. 3c presents the semantic target distribution with
a variety of scenarios. This mix captures both indoor and
outdoor environments with common static and dynamic ob-
jects. Fig. 3b highlights the dataset’s rich caption vocabu-
lary. The targets are defined as either explicit or implicit.
Explicit targets specify the object name directly, whereas
implicit targets describe the object through its attributes or
functions embedded in the prompt context (Fig. 4). Overall,
the whole dataset is divided into a train split (325 scenarios)
and a benchmark (evaluation) split (125 scenarios).

3.2. Target Benchmark Architecture
The Target benchmark architecture (Fig. 5) consists of two
main components designed to quantify world model plan-
ning capabilities. First, the world decoder extracts camera
trajectories from generated videos using state-of-the-art 3D
reconstruction methods. Second, the path evaluation mod-
ule compares predicted trajectories against SLAM-verified
ground truth using a comprehensive suite of metrics.

3.2.1. World-Decoder
Spatio-temporal Reconstruction. As shown in Fig. 5, to
extract camera trajectories from WM’s generated videos,
we employ three state-of-the-art 3D reconstruction meth-
ods: VGGT [34], SpaTracker [36], and ViPE [14]. Each
method processes video frames to recover camera poses, but
differs in their approach and output characteristics.

VGGT. Visual Geometry Grounded Transformer
(VGGT) is a feed-forward transformer that directly
predicts camera poses, depth maps, and point clouds

from multi-view images. Given a sequence of S im-
ages I = {I1, I2, . . . , IS}, VGGT first encodes them
through a vision transformer to obtain aggregated to-
kens. A camera head then predicts a pose encoding
ps = [Ts;qs; fovs] ∈ R9 for each frame Is, where
Ts ∈ R3 is the camera translation matrix, qs ∈ R4 is the
rotation quaternion, and fovs ∈ R2 represents the horizon-
tal and vertical field of view. This encoding is converted to
standard camera parameters Es = [R(qs) | Ts] ∈ R3×4,
where R(qs) converts the quaternion to a rotation matrix.

SpaTracker. SpaTracker extends VGGT with tracking
for better temporal consistency. It adopts a two-stage de-
sign: (1) VGGT4Track predicts initial poses {E(0)

s }Ss=1 and
depths {Ds}Ss=1; (2) a tracking module refines these poses
via point correspondences across frames. Given query
points Q ∈ RN×3 on the first frame, the tracker predicts
their 3D trajectories and optimizes camera poses through
bundle adjustment:

{E∗
s} = arg min

{Es}

S∑
s=1

N∑
n=1

ρ
(
∥π(KsEsXn)− xn,s∥2

)
(1)

where Xn is the 3D position of point n, π(·) the projection,
xn,s the tracked 2D point, and ρ(·) a robust loss. The result
is a refined camera-to-world trajectory {C2W,s}Ss=1, where
each C2W,s ∈ R4×4 is the full camera-to-world transform.
As in VGGT, SpaTracker outputs are at arbitrary scale.

ViPE. ViPE is a SLAM-based visual-inertial pipeline
providing metric-scale poses by fusing visual and inertial
data. Given RGB frames and IMU inputs, it performs in-
cremental pose estimation with loop closure. Unlike VGGT
and SpaTracker, ViPE directly outputs paths in metric units,
removing the need for scale recovery. The final path is a
sequence of SE(3) transformations {Ts}Ss=1, where each
Ts ∈ R4×4 encodes rotation and translation in meters.
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Figure 5. Target Benchmark Architecture.

Scale Factor Recovery. Monocular methods such as
VGGT and SpaTracker estimate camera motion only up to
an unknown global scale. We restore metric consistency at
the segment level by anchoring predictions to a single scalar
scale factor λ derived from ground truth displacement. Let
E1,Ek ∈ R3×4 be the predicted extrinsic matrices for the
first and the k-th frame. We extract the translation vectors
t1 and tk as the fourth column of E1 and Ek. The pre-
dicted displacement is dpred = ∥tk − t1∥2, and the scale
factor is λ = dreal/dpred, while the real displacement is
dreal. We then rescale all predicted translations uniformly,
tscaleds = λ ts for s = 1, . . . , S. This lightweight, data-
anchored normalization preserves relative geometry while
lifting trajectories to meters, enabling direct and fair com-
parison against ground truth paths. Note that ViPE inher-
ently produces metric-scale outputs via sensor fusion and
therefore does not require this step.

3.2.2. Path Evaluation
We evaluate predicted trajectories on the test split of the
Target dataset using a comprehensive suite of metrics that
assess accuracy, goal-reaching capability, and path con-
sistency. All metrics assume 2D trajectories represented
as sequences of positions, with ground truth sGT =
{s1, s2, . . . , sT } and prediction ŝ = {ŝ1, ŝ2, . . . , ŝT },
where st, ŝt ∈ R2 and T is the total number of time steps.

Average Displacement Error (ADE). Measures the aver-
age L2 distance between predicted and ground truth posi-

tions across all timesteps: ADE = 1
T

∑T
t=1 ∥ŝt − st∥2.

Final Displacement Error (FDE). Evaluates the distance
between final positions: FDE = ∥ŝT − sT ∥2.

Miss Rate (MR). Computes the percentage of predicted
points that deviate beyond a threshold τ (default: 2.0 m):
MR = 1

T

∑T
t=1 I [∥ŝt − st∥2 > τ ] · 100

Soft Endpoint (SE). Uses a Gaussian penalty to measure
the proximity of the endpoint to the target:

SE = exp

(
−∥ŝT − sT ∥22

2σ2

)
(2)

where σ = 0.6 m controls the tolerance. SE ∈ [0, 1] where
1 indicates perfect alignment.

Approach Consistency (AC). Evaluates whether the pre-
dicted trajectory stays within a progress-dependent corri-
dor around the ground truth path. We uniformly sample
M = 20 reference points along the ground truth trajectory
and assign each a variable radius:

σi = σmin + (σmax − σmin) exp

(
− (pi − 0.5)2

2β2

)
(3)

where pi = i/(M − 1) is the normalized progress, σmin =
0.15 m, σmax = 0.5 m, and β = 0.25. A predicted point ŝj

5



is covered if mini ∥ŝj − sGT
i ∥2 ≤ σi. The AC score is:

AC =


1, Nc = Np

exp

(
−γ · Np −Nc

Np

)
, otherwise

(4)

where Np is the total number of predicted points, Nc is the
number covered by the corridor, and γ = 5.

Weighted Overall (WO) Score. Aggregates all metrics
into a unified score ∈ [0, 1] (the higher the better):

Soverall = wADE · exp
(
−ADE

τADE

)
+ wFDE · exp

(
−FDE

τFDE

)
+ wMR ·

(
1− MR

100

)
+ wSE,AC · SE ·AC

(5)
with default weights: wADE = 0.05, wFDE = 0.10,
wMR = 0.10, wSE,AC = 0.65, and scale parameters
τADE = τFDE = 1.0 m.

4. Experiments
Our proposed evaluation framework uses five key met-
rics detailed in Sec. 3.2.2. The analysis includes several
state-of-the-art world models, including Sora 2 [29], Veo
3.1 [7], Veo 3.1-fast, and multiple variants of the Wan
series (Wan2.5-I2V-Preview, Wan2.2-Plus, Wan2.2-Flash,
Wan2.1-Plus, and Wan2.1-Turbo) [32]. In addition, we
evaluate the fine-tuned Wan2.2-TI2V-5B models.

4.1. Implementation Details
For model fine-tuning we use the LoRA training framework
offered by DiffSynth-Studio [23], with 8× NVIDIA A800
80 GB GPUs. For inference of the fine-tuned models on the
Target Benchmark we utilize one single NVIDIA RTX PRO
6000 Blackwell 96 GB GPU, while closed-source models
are accessed directly through their official APIs. All gener-
ated videos are produced at 720p or 1080p resolution with
durations ranging from 5 to 10 seconds. All evaluation ex-
periments are conducted on a DELL Alienware Aurora R15
workstation equipped with an NVIDIA RTX 4090 GPU.

4.2. Evaluation for off-the-shelf Models
Table 1 shows the evaluation results using VGGT as the
spatio-temporal reconstruction tool. Among all evaluated
off-the-shelf models, Wan2.2-Flash achieves the best over-
all performance with a weighted overall score of 0.299.
Specifically, it obtains the lowest errors in FDE (1.362m),
ADE (1.005m), and MR (38.75%), while achieving the
highest SE (0.292). Figure 6 visualizes the performance
comparison across all models. The ground truth video
achieves the highest scores across all metrics, and is still
affected by reconstruction errors like the other models.

Figure 6. World model performance comparison with VGGT as
world decoder’s spatio-temporal reconstruction tool.

Displacement Errors: ADE values range from 1.0m to
2.4m across different models. Veo 3.1 exhibits the high-
est displacement error (2.432m), while Wan2.2-Flash and
Wan2.2-Plus achieve the best accuracy (around 1.0m). For
FDE, errors show wider variation, with Wan2.1-Turbo dis-
playing the highest FDE (4.243m).

Reliability Metrics: The Miss Rate varies significantly
from 38.75% to 77.25%. Veo 3.1 shows the highest miss
rate (77.25%), indicating poor trajectory quality, while
Wan2.2-Flash achieves the best (38.75%). Most models
score below 0.3 on the Soft Endpoint metric, suggesting
challenges in reaching target endpoints accurately.

Consistency: Wan2.1-Turbo achieves the highest Ap-
proach Consistency (1.000), indicating perfect directional
alignment, while Veo 3.1 shows the poorest performance
(0.450). Sora 2 demonstrates good consistency at 0.788.

Explicit vs. Implicit Targets: As shown in Table 2, per-
formance on implicitly defined targets closely matches that
on explicit targets, with small, model-specific fluctuations.
This indicates that current WMs can understand semantic
goals even when they are not explicitly defined.

4.3. Fine-tuned Models

For WM fine-tuning, we use 325 scenarios from our dataset
and sample 121 frames from each video. To expand the
dataset size, we apply a shifting-frame augmentation: for
each video, we generate four clips by evenly sampling
121 frames starting from different offsets, preserving sim-
ilar temporal coverage. We choose to fine-tune the open-
sourced Wan2.2-TI2V-5B model under two settings: with-
out and with data augmentation. Table 1 evaluates all
models on unseen data using VGGT for path reconstruc-
tion. The fine-tuned Wan2.2-5B (Wan2.2-5B-FT) im-
proves its score from 0.066 to 0.287. The augmented ver-
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Spatial
World Model

Open Video Length (s) Metrics
WO ↑

Method Source & Resolution FDE ↓ ADE ↓ MR ↓ SE ↑ AC ↑

VGGT [34]

gt video - 8 - 720p 0.203 0.580 11.08 0.901 0.993 0.783
Sora 2 ✗ 8 - 720p 1.912 1.289 54.84 0.160 0.788 0.178
Veo 3.1 ✗ 8 - 720p 3.125 2.432 77.25 0.212 0.450 0.187

Veo 3.1-fast ✗ 8 - 720p 2.863 1.798 57.42 0.140 0.691 0.165
Wan2.5-Preview† ✗ 10 - 720p 2.478 1.596 61.69 0.182 0.873 0.188

Wan2.2-Plus† ✗ 5 - 1080p 1.377 1.044 45.25 0.240 0.686 0.252
Wan2.2-Flash† ✗ 5 - 720p 1.362 1.005 38.75 0.292 0.746 0.299
Wan2.1-Plus† ✗ 5 - 720p 2.782 1.594 53.90 0.090 0.715 0.131

Wan2.1-Turbo† ✗ 5 - 720p 4.243 1.850 64.21 0.000 1.000 0.046
Wan2.2-5B-base ✓ 8 - 720p 3.666 1.636 58.11 0.012 0.944 0.066
Wan2.2-5B-FT§ ✓ 8 - 720p 1.320 0.897 31.91 0.261 0.787 0.287

Wan2.2-5B-FT-DA¶ ✓ 8 - 720p 1.050 0.816 26.71 0.333 0.810 0.345

Table 1. Evaluation results of Final Displacement Error (FDE), Average Displacement Error (ADE) and Miss Rate (MR), Soft Endpoint
(SE), Approach Consistency (AC) and Weighted Overall (WO). † Image-to-Video (I2V) models, § fine-tuned, ¶ fine-tuned with data augmentation.

D
at

a World Metrics
WO ↑

Model FDE ↓ ADE ↓ MR ↓ SE ↑ AC ↑

E
xp

lic
it

Ta
rg

et

gt video 0.210 0.586 10.71 0.892 0.994 0.778

Sora 2 1.979 1.381 56.93 0.165 0.740 0.177

Veo 3.1 3.275 2.598 80.69 0.172 0.419 0.155

Veo 3.1-f 3.225 1.928 57.37 0.136 0.685 0.162

Wan2.5∗ 2.449 1.656 61.70 0.182 0.826 0.189

Wan2.2-P† 1.413 1.028 42.25 0.242 0.724 0.258

Wan2.2-Fl† 1.418 1.006 35.69 0.295 0.776 0.305

Im
pl

ic
it

Ta
rg

et

gt video 0.193 0.573 11.61 0.913 0.992 0.791

Sora 2 1.819 1.160 51.91 0.154 0.856 0.179

Veo 3.1 2.914 2.200 72.43 0.269 0.493 0.231

Veo 3.1-f 2.355 1.616 57.49 0.144 0.700 0.170

Wan2.5∗ 2.519 1.512 61.67 0.181 0.941 0.188

Wan2.2-P† 1.327 1.067 49.46 0.238 0.634 0.242

Wan2.2-Fl† 1.283 1.002 43.05 0.288 0.706 0.290

Table 2. Evaluation results with explicit and implicit semantic tar-
gets. ∗ Wan2.5-I2V-Preview, † Image-to-Video (I2V) models.

sion (Wan2.2-5B-FT-DA) outperforms the base model
by more than 400% and achieves the best overall score.

4.4. Ablation Study
Comparison Among Reconstruction Tools. Fig. 7, Ta-
ble 1 and Table 3 compare the performance of three spatio-
temporal reconstruction tools: VGGT, SpaTracker, and
ViPE. VGGT achieves the best results, with the ground truth
video obtaining a weighted overall score of 0.783 and the
best-performing off-the-shelf world model (Wan2.2-Flash)
achieving 0.299. SpaTracker shows slightly lower perfor-
mance, while ViPE produces the weakest results. The high
score achieved by VGGT on ground truth videos (0.783)

Figure 7. Overall score comparison between different spatio-
temporal reconstruction tools. Detailed evaluation results with
SpaTracker or ViPE can be found in the appendix.

confirms that decoded trajectories align well with ground
truth trajectories, validating our evaluation approach.

4.5. Sensitivity to the Planning Horizon Length
To assess how the path planning horizon influences WM
performance, Table 4 reports results for two WMs evalu-
ated at three horizons: 8 s, 6 s, and 4 s. Reducing the
horizon from 6 s to 4 s yields an 8% WO improvement for
Wan2.2-I2V-Flash, while shortening it from 8 s to 6
s increases the weighted score of Wan2.2-I2V-Plus by
more than 15%. Overall, the weighted score consistently
improves as the horizon decreases, suggesting that WMs are
more reliable when planning on shorter temporal windows.

5. Discussion
Benchmark Validity and Performance Ceiling. Ground
truth videos achieve a score of 0.783 when decoded with
VGGT (Table 1), establishing an upper bound for the WO
score. The gap from a perfect score stems from inherent
reconstruction limitations: (1) monocular scale recovery in-
troduces systematic errors, and (2) feed-forward pose esti-
mation struggles with motion blur. Critically, this ceiling
is not a flaw: it proves that our pipeline correctly distin-
guishes high-quality inputs (0.783 for ground truth) from
poor ones (0.066-0.299 for base models). As reconstruc-
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World Model
SpaTracker [36] ViPE [14]

FDE↓ ADE↓ MR↓ SE↑ AC↑ WO↑ FDE↓ ADE↓ MR↓ SE↑ AC↑ WO↑

gt video 0.526 0.600 17.19 0.59 0.95 0.558 1.345 0.845 30.22 0.19 0.89 0.249

Sora 2 1.913 1.257 51.33 0.14 0.82 0.177 2.147 1.245 51.04 0.09 0.85 0.142

Veo 3.1 2.607 2.133 78.49 0.20 0.42 0.172 2.916 1.945 55.07 0.16 0.62 0.188

Veo 3.1-fast 3.402 2.150 62.89 0.15 0.59 0.166 2.601 1.715 58.76 0.15 0.62 0.175

Wan2.5-Preview† 2.379 1.510 61.93 0.18 0.88 0.187 2.686 1.608 59.52 0.10 0.83 0.132

Wan2.2-Plus† 1.409 1.631 73.19 0.25 0.68 0.225 1.621 0.976 36.65 0.18 0.80 0.227
Wan2.2-Flash† 1.407 1.572 71.06 0.28 0.71 0.254 1.687 1.006 37.42 0.17 0.81 0.222

Wan2.1-Plus† 2.810 2.110 63.08 0.08 0.67 0.118 2.858 1.510 53.70 0.04 0.76 0.102

Wan2.1-Turbo† 4.219 1.833 63.45 0.00 1.00 0.047 4.256 1.856 64.35 0.00 1.00 0.046

Wan2.2-TI2V-5B 3.661 1.666 57.05 0.03 0.89 0.085 3.773 1.705 60.27 0.01 0.91 0.066

Wan2.2-5B-FT§ 1.342 0.951 38.53 0.23 0.74 0.259 1.980 1.079 42.76 0.12 0.80 0.176

Wan2.2-5B-FT-DA¶ 1.055 0.875 33.99 0.33 0.75 0.338 1.841 1.023 39.01 0.11 0.83 0.180

Table 3. Evaluation results of SpaTracker and ViPE. † Image-to-Video (I2V) models, § Wan2.2-TI2V-5B fine-tuned model, ¶ Wan2.2-TI2V-5B model
fine-tuned with data augmentation.

M
od

el

Horizon
Metrics

WO ↑
FDE ↓ ADE ↓ MR ↓ SE ↑ AC ↑

2.
2-

Fl
as

h

∗
8s 1.362 1.005 38.75 0.292 0.746 0.299
6s 1.393 0.762 23.76 0.261 0.579 0.290
4s 1.278 0.713 23.18 0.290 0.574 0.314

2.
2-

Pl
us

†
8s 1.377 1.044 45.25 0.240 0.686 0.252
6s 1.390 0.789 25.36 0.263 0.584 0.291
4s 1.400 0.783 25.91 0.265 0.534 0.292

Table 4. Evaluation results with different path planning horizons,
with VGGT. ∗ Wan2.2-I2V-Flash, † Wan2.2-I2V-Plus.

tion methods improve, this ceiling can be raised by substi-
tuting VGGT with better alternatives, making Target-Bench
forward-compatible with future advances.

Current World Model Performance. The best off-the-
shelf WM, Wan2.2-Flash, achieves only 0.299 overall
score. This indicates a significant gap between current
world model capabilities and reliable path planning. How-
ever, qualitative inspection of generated videos reveals that
most models correctly understand the semantic target and
show plausible motion tendencies. Additionally, our bench-
mark includes challenging scenarios with implicit semantic
targets. Since we evaluate one-time inference without re-
planning, WMs show promising potential for improvement.

Holistic Evaluation: Beyond Visual Quality. Target-
Bench intrinsically evaluates three capabilities simultane-
ously: (1) spatio-temporal consistency, (2) semantic rea-
soning, and (3) geometric path planning accuracy. Blurred
frames, temporal discontinuities, or spatial warping will
directly result in poor reconstruction and low path accu-

racy. This holistic assessment fundamentally differs from
existing benchmarks that isolate individual dimensions (vi-
sual quality, physics consistency) and miss their integration.
Our benchmark shows that perceptual realism does not
guarantee path planning utility, addressing a critical blind
spot in current evaluation practices.

The Power of Targeted Domain Adaptation. Fine-tuning
with merely 325 real-world robot scenarios produces re-
markable gains: 423% improvement over the base model,
and surpassing all off-the-shelf models. This result chal-
lenges conventional wisdom that larger models with more
pre-training data always outperform smaller specialized
models. Instead, our findings demonstrate that high-quality
domain-specific data matter more than scale, for robotic
planning tasks. The rapid adaptation (335% gain even with-
out data augmentation) indicates that WMs have strong po-
tential for spatial reasoning and require only targeted ex-
posure to robot-specific tasks, suggesting pathways for de-
ploying WMs in robotics.

Real-World Navigation. Given an observation and seman-
tic goal, WMs predict future frames depicting motion to-
ward the target, and our world-decoder extracts a path for
the robot to execute. This has potential for future use in
closed-loop robot navigation in unstructured, mapless en-
vironments. Recent work [4, 37] shows WMs can explore
new spaces while retaining information in latent memory.
Combined with our decoder, robots could follow semantic
goals using only visual predictions.

6. Conclusion and Future Work
We introduced Target-Bench for evaluating world models
on mapless path planning toward semantic targets. Our

8



evaluation pipeline recovers planned paths from generated
videos and measures planning performance against SLAM-
based ground-truth robot paths. The best commercial WM
achieves a relatively low score. However, fine-tuning an
open-source 5B-parameter model on only 325 scenarios
from our dataset surpasses the best commercial WMs and
improves over its base version by more than 400%. This
suggests that WMs can effectively learn navigation tasks
from limited real-world data, showing promising potential
for robot path planning.

Future work could extend the current framework towards
closed-loop re-planning on the robot, and studying how la-
tent memory supports complex receding-horizon navigation
tasks. Better reconstruction tools are expected to further
improve path planning accuracy, facilitating real-world de-
ployment of WMs in robotics.
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